Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

3D ÇÁ¸°Æà ¹× ¹Ð¸µ ¹æ¹ýÀ¸·Î Á¦ÀÛµÈ Àӽà º¸Ã¶¹° ÀûÇÕµµ ºñ±³ ºÐ¼®

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method

±¸°­È¸º¹ÀÀ¿ë°úÇÐÁö 2020³â 36±Ç 4È£ p.254 ~ 261
¼Õ¿µÅ¹, ¼ÕÅ«¹Ù´Ù, À̱Ժ¹,
¼Ò¼Ó »ó¼¼Á¤º¸
¼Õ¿µÅ¹ ( Son Young-Tak ) - Kyungpook National University Graduate School Department of Dental Science
¼ÕÅ«¹Ù´Ù ( Son Keunbada ) - Kyungpook National University Graduate School Department of Dental Science
À̱Ժ¹ ( Lee Kyu-Bok ) - Kyungpook National University School of Dentistry Department of Prosthodontics

Abstract

¸ñÀû: º» ¿¬±¸ÀÇ ¸ñÀûÀº ¼­·Î ´Ù¸¥ Á¦ÀÛ ¹æ¹ýÀÎ Àý»è °¡°ø°ú ÀûÃþ °¡°ø ±â¼ú·Î Á¦ÀÛµÈ Àӽà º¸Ã¶¹°ÀÇ º¯¿¬ ¹× ³»¸é ÀûÇÕµµ¸¦ Æò°¡ÇÏ´Â °ÍÀÌ´Ù.

¿¬±¸ Àç·á ¹× ¹æ¹ý: »ó¾Ç ¿ìÃø Á¦1´ë±¸Ä¡¸¦ µµÀç ¼öº¹À» À§ÇÑ Áö´ëÄ¡ ¸ðÇüÀ¸·Î ÁغñÇÏ¿´´Ù. ¼®°í¸¦ ÀÌ¿ëÇÏ¿© ÃÑ 40°³ÀÇ ½ÇÇè ¸ðÇüÀ¸·Î º¹Á¦ÇÏ¿´°í, °¢°¢ÀÇ ½ÇÇè ¸ðÇüÀ» ±¸°­ ½ºÄ³³Ê¸¦ »ç¿ëÇÏ¿© ½ºÄµ µ¥ÀÌÅ͸¦ ȹµæÇÏ¿´´Ù. 3Á¾ÀÇ 3D ÇÁ¸°ÅÍ (Meg-printer 2; Megagen, Zenith U; Dentis ±×¸®°í Zenith D; Dentis) ¹× 1Á¾ÀÇ ¹Ð¸µ Àåºñ(imes-icore 450i; imes-icore GmbH)¸¦ »ç¿ëÇÏ¿© °¢ ±×·ì´ç 10°³ÀÇ Àӽà º¸Ã¶¹°À» Á¦ÀÛÇÏ¿´´Ù. Àӽà º¸Ã¶¹°ÀÇ ³»¸é¿¡ ½Ç¸®ÄÜÀ» ä¿ì°í ¸ðÇü¿¡ ÀûÇÕÇÏ¿© ÁßÇÕÀÌ ¿Ï·áµÈ ÈÄ, ½Ç¸®ÄÜÀ¸·Î ³»¸éÀÌ º¹Á¦µÇ¾î ÀÖ´Â ½ÇÇè ¸ðÇüÀ» ±¸°­ ½ºÄ³³Ê¸¦ »ç¿ëÇÏ¿© ½ºÄµ µ¥ÀÌÅ͸¦ ȹµæÇÏ¿´´Ù. 3Â÷¿ø °Ë»ç ¼ÒÇÁÆ®¿þ¾î(Geomagic control X; 3D Systems)¸¦ ÀÌ¿ëÇÏ¿© º¯¿¬ °£°Ý, Àý´ë º¯¿¬ °£°Ý, ¼«ÆÛ, Ãຮ, ±³µÎ, ±³ÇÕ ¿µ¿ªÀÇ ÀûÇÕµµ¸¦ ºÐ¼®ÇÏ¿´´Ù. Åë°è ºÐ¼®Àº Á¦ÀÛ ¹æ¹ýÀÇ Â÷À̸¦ ºñ±³Çϱâ À§Çؼ­ Kruskal-Wallis test¸¦ »ç¿ëÇÏ¿© °ËÁõÇÏ¿´À¸¸ç, »çÈÄ °ËÁ¤À» À§Çؼ­ Mann-Whitney U-test and Bonferroni correction methodÀ» »ç¿ëÇÏ¿´´Ù(¥á = 0.05).

°á°ú: 3Á¾ÀÇ 3D ÇÁ¸°ÅÍ¿Í 1Á¾ÀÇ ¹Ð¸µ Àåºñ¿¡¼­ Á¦ÀÛµÈ Àӽà º¸Ã¶¹°ÀÇ Àý´ë º¯¿¬ °£°ÝÀº À¯ÀÇÇÑ Â÷À̸¦ º¸ÀÌÁö ¾Ê¾Ò´Ù(P = 0.812). Ãຮ, ±³ÇÕ °£°Ý¿¡¼­ ¹Ð¸µ Àåºñ¿Í 3D ÇÁ¸°ÅÍ »çÀÌ¿¡ À¯ÀÇÇÑ Â÷À̸¦ º¸¿´´Ù(P < 0.001).

°á·Ð: 3Á¾ÀÇ 3D ÇÁ¸°ÅÍ·Î Á¦ÀÛµÈ Àӽà º¸Ã¶¹°ÀÇ º¯¿¬ ÀûÇÕµµ´Â ¸ðµÎ ÀÓ»óÀû Çã¿ë ¹üÀ§(< 120 ¥ìm)¿¡ ÀÖ¾úÀ¸¹Ç·Î, ÀûÇÕµµ Ãø¸é¿¡¼­ º»´Ù¸é Àӽà º¸Ã¶¹° Á¦ÀÛÀ» À§Çؼ­ ÃæºÐÈ÷ »ç¿ëµÉ ¼ö ÀÖ´Ù.

Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and
Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (¥á = 0.05).

Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer.

Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ¥ìm), it can be sufficiently used for the fabrication of the temporary crown.

Å°¿öµå

3D ÇÁ¸°ÅÍ; ¹Ð¸µ; Àӽà º¸Ã¶¹°; º¯¿¬ ÀûÇÕ; Áßø
3D printer; milling; temporary crown; marginal fit; superimposition

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI